Astrophysics (Index)About

gravitational microlensing

(microlensing)
(gravitational lensing by "small" objects such as individual stars and planets)

Gravitational microlensing (or just microlensing) is gravitational lensing by smaller objects, e.g., by stars within a galaxy rather than the galaxy. (The term also applies to objects smaller than stars, e.g., planets, but the term nanolensing is coming into use for this regime.) From it, some information can be gleaned about the lensing and lensed objects. Most observable instances show nothing but a magnification of the light of the lensed object, the angle of the light's redirection being an immeasurable tiny fraction of an arcsecond. They are detected by the light curve which occurs as one object passes in front of the other (a microlensing event).

The observed phenomena can be described in relation to the event's Einstein radius (aka Einstein angle), which is the angular radius of an Einstein ring, the angular radius of a ring of light that would be formed if the two were exactly aligned, and can be estimated by the length of the event. It is also related to the mass of the lensing object and the distances to both objects and if two of these can be determined by other means, the other can be calculated based upon the event. For example, also having "normal" parallax measurements of both stars (if both are close) allows the mass of the lens to be determined.

Several factors affect the pattern observed: the position of the observer (producing an Einstein parallax: either the movement of Earth, or the use of a distant space observatory potentially yields this) the position of the lensed object, e.g., if it is one of a binary star pair with significant orbital motion during the event (producing xallarap, a parallax-like measurement due to the displacement of the lensed object rather than the observer; the name coming from parallax spelled backward), or an extra-solar planet orbiting the lens, i.e., another small lens, or significant size of the objects causing a divergence from the approximations modeling them as point sources. All these effects can be used to glean more information, yielding additional equations that can be used to break the degeneracy and yield stellar parameters.


(gravity,EMR,gravitational lensing,transient type)
Further reading:
http://en.wikipedia.org/wiki/Microlensing

Referenced by pages:
cadence
EROS
exosatellite
extra-solar planet
fast radio burst (FRB)
GERLUMPH
GMAN
gravitational lensing
Hoag's Object
light curve
MACHO
MACHO Project
MicroFUN (μFUN)
MOA
Microlensing Planet Search (MPS)
OGLE
Probing Lensing Anomalies Network (PLANET)
POINT-AGAPE
RoboNet
transient
transient astronomy
WFIRST

Index