Astrophysics (Index) | About |

A **partial differential equation** (**PDE**) is an equation that
includes differential(s) of one or more variables and implicitly
stipulates that the equation holds when its other variables have a
differential of zero.
This is useful for the case where variables are independent,
i.e., when one does not necessarily vary with the other.
This is in contrast to a **total differential equation** that
does not stipulate this, i.e., the specified differential of
a variable might depend on variation of the other variables.
Both are examples of **differential equations**,
equations that include terms based on how much one
variable is changing in relation to another.

The corresponding derivatives are referred to as
**partial derivatives** and **total derivatives**.
A differential equation of just one independent variable is an
**ordinary differential equation** or **ODE**.

In written form, a partial derivative is indicated by use of a modified d (somewhat like a backward six: ∂) rather than a normal d. Example written partial differential equation:

∂x/∂t = 5 + ∂y/∂t

Example written total differential equation:

dx/dt = 5 + dy/dt

Indications of position (dimensions) and time are basically independent (in a non-relativistic scenario), thus PDEs are useful and common in modeling functions on space and time (written in terms of coordinates), and also equations built around variables related to such coordinates, such as velocity and momentum. As such, PDEs are ubiquitous in physics.

An example of the type of problem that can be stated as a total differential equation is a gas law (equation of state) written as variables indicating temperature, pressure, density, and volume, in cases there are dependencies among them. Non-astronomy scenarios include modeling economics, which has a lot of cross-influences.

Solving a total differential equation often involves rewriting it as an equivalent partial differential equation, adding additional terms indicating the effects of the dependencies. Thus the total differential equation can be seen as giving a more compact statement of some aspect of a scenario, and may be considered a step toward forming the partial differential equation (the latter of which may imply an ability for one variable to change without another changing, that isn't actually possible). Obviously it is useful to understand the difference between the two types of differential equations, and to form equations using a consistent set of assumptions and attention to notation.

http://en.wikipedia.org/wiki/Partial_differential_equation

http://en.wikipedia.org/wiki/Total_derivative

http://en.wikipedia.org/wiki/Ordinary_differential_equation

https://spin0r.wordpress.com/2013/01/04/the-difference-between-partial-and-total-derivatives/

basis function

chirp mass (M

finite difference method (FDM)

finite element method (FEM)

flux reconstruction (FR)

finite volume method (FVM)

Godunov scheme

scale height (H)

Schrödinger equation

spherical harmonics

stencil

telegrapher's equations